information company

Consumers Won’t Settle For Cheap, Discounted Products

Source: http://www.businessinsider.com/consumers-are-not-willing-to-settle-with-discounted-cheap-products-2011-10


sam's club shopping

No matter how thin your wallet is, you’re probably not willing to sacrifice beauty to save. 

Less than one-fifth of 25,000 respondents from 51 countries say they’d buy cheaper health and beauty products for the price, according to a survey by Nielsen, a global information company

Meanwhile, 61% chose “good value” over “low price” for any retail products their families may need, meaning a generic brand of bread may get passed over for a loaf of tastier (and possibly healthier) Pepperidge Farm bread.

“Value is not about price alone,” James Russo, vice president of Nielsen’s Global Consumer Insights, said in a statement. “Retailers and manufacturers who offer good values tailored around benefits of the product beyond price will resonate with consumers who continue to look for ways to stretch their money in a tough economy.”

The study found product preference also depends on where the respondents live, with those in Asia Pacific, Europe, Latin America, and North America preferring good value over lower prices, and those living in Africa and the Middle East choosing price over value.

But just because North Americans prefer value over lower prices doesn’t mean that they’re willing to pay full price. In fact, Americans are among the world’s leading coupon-users, followed closely by China and Hong Kong.

We also buy in bulk more than anyone else in the world. According to Nielsen’s chart below, the main reason Americans visit the grocery store is to stock up, whereas a quick trip to replenish products is more popular in other parts of the world.

consumers Nielsen

Learn why consumer brand loyalty may never recover from the recession>

Please follow Your Money on Twitter and Facebook.

Join the conversation about this story »

See Also:




drag2share – drag and drop RSS news items on your email contacts to share (click SEE DEMO)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Monday, October 17th, 2011 news No Comments

How Google Crunches All That Data

Source: http://gizmodo.com/5495097/how-google-crunches-all-that-data

If data centers are the brains of an information company, then Google is one of the brainiest there is. Though always evolving, it is, fundamentally, in the business of knowing everything. Here are some of the ways it stays sharp.

For tackling massive amounts of data, the main weapon in Google’s arsenal is MapReduce, a system developed by the company itself. Whereas other frameworks require a thoroughly tagged and rigorously organized database, MapReduce breaks the process down into simple steps, allowing it to deal with any type of data, which it distributes across a legion of machines.

Looking at MapReduce in 2008, Wired imagined the task of determining word frequency in Google Books. As its name would suggest, the MapReduce magic comes from two main steps: mapping and reducing.

The first of these, the mapping, is where MapReduce is unique. A master computer evaluates the request and then divvies it up into smaller, more manageable “sub-problems,” which are assigned to other computers. These sub-problems, in turn, may be divided up even further, depending on the complexity of the data set. In our example, the entirety of Google Books would be split, say, by author (but more likely by the order in which they were scanned, or something like that) and distributed to the worker computers.

Then the data is saved. To maximize efficiency, it remains on the worker computers’ local hard drives, as opposed to being sent, the whole petabyte-scale mess of it, back to some central location. Then comes the second central step: reduction. Other worker machines are assigned specifically to the task of grabbing the data from the computers that crunched it and paring it down to a format suitable for solving the problem at hand. In the Google Books example, this second set of machines would reduce and compile the processed data into lists of individual words and the frequency with which they appeared across Google’s digital library.

The finished product of the MapReduce system is, as Wired says, a “data set about your data,” one that has been crafted specifically to answer the initial question. In this case, the new data set would let you query any word and see how often it appeared in Google Books.

MapReduce is one way in which Google manipulates its massive amounts of data, sorting and resorting it into different sets that reveal new meanings and have unique uses. But another Herculean task Google faces is dealing with data that’s not already on its machines. It’s one of the most daunting data sets of all: the internet.

Last month, Wired got a rare look at the “algorithm that rules the web,” and the gist of it is that there is no single, set algorithm. Rather, Google rules the internet by constantly refining its search technologies, charting new territories like social media and refining the ones in which users tread most often with personalized searches.

But of course it’s not just about matching the terms people search for to the web sites that contain them. Amit Singhal, a Google Search guru, explains, “you are not matching words; you are actually trying to match meaning.”

Words are a finite data set. And you don’t need an entire data center to store them—a dictionary does just fine. But meaning is perhaps the most profound data set humanity has ever produced, and it’s one we’re charged with managing every day. Our own mental MapReduce probes for intent and scans for context, informing how we respond to the world around us.

In a sense, Google’s memory may be better than any one individual’s, and complex frameworks like MapReduce ensure that it will only continue to outpace us in that respect. But in terms of the capacity to process meaning, in all of its nuance, any one person could outperform all the machines in the Googleplex. For now, anyway. [Wired, Wikipedia, and Wired]

Image credit CNET

Memory [Forever] is our week-long consideration of what it really means when our memories, encoded in bits, flow in a million directions, and might truly live forever.

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Wednesday, March 17th, 2010 news No Comments

Dr. Augustine Fou is Digital Consigliere to marketing executives, advising them on digital strategy and Unified Marketing(tm). Dr Fou has over 17 years of in-the-trenches, hands-on experience, which enables him to provide objective, in-depth assessments of their current marketing programs and recommendations for improving business impact and ROI using digital insights.

Augustine Fou portrait
http://twitter.com/acfou
Send Tips: tips@go-digital.net
Digital Strategy Consulting
Dr. Augustine Fou LinkedIn Bio
Digital Marketing Slideshares
The Grand Unified Theory of Marketing